Graph Learning from Data under Structural and Laplacian Constraints
نویسندگان
چکیده
Graphs are fundamental mathematical structures used in various fields to represent data, signals and processes. In this paper, we propose a novel framework for learning/estimating graphs from data. The proposed framework includes (i) formulation of various graph learning problems, (ii) their probabilistic interpretations and (iii) associated algorithms. Specifically, graph learning problems are posed as estimation of graph Laplacian matrices from some observed data under given structural constraints (e.g., graph connectivity and sparsity level). From a probabilistic perspective, the problems of interest correspond to maximum a posteriori (MAP) parameter estimation of GaussianMarkov random field (GMRF) models, whose precision (inverse covariance) is a graph Laplacian matrix. For the proposed graph learning problems, specialized algorithms are developed by incorporating the graph Laplacian and structural constraints. The experimental results demonstrate that the proposed algorithms outperform the current state-of-the-art methods in terms of accuracy and computational efficiency.
منابع مشابه
On Eccentricity Version of Laplacian Energy of a Graph
The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...
متن کاملOn the Effectiveness of Laplacian Normalization for Graph Semi-supervised Learning
This paper investigates the effect of Laplacian normalization in graph-based semi-supervised learning. To this end, we consider multi-class transductive learning on graphs with Laplacian regularization. Generalization bounds are derived using geometric properties of the graph. Specifically, by introducing a definition of graph cut from learning theory, we obtain generalization bounds that depen...
متن کاملLaplacian Energy of a Fuzzy Graph
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
متن کاملSome results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs
Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...
متن کاملTowards a Theoretical Foundation for Laplacian-Based Manifold Methods
In recent years manifold methods have attracted a considerable amount of attention in machine learning. However most algorithms in that class may be termed “manifold-motivated” as they lack any explicit theoretical guarantees. In this paper we take a step towards closing the gap between theory and practice for a class of Laplacian-based manifold methods. These methods utilize the graph Laplacia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.05181 شماره
صفحات -
تاریخ انتشار 2016